由于细菌耐药性和新出现的传染病成为人类的潜在威胁,核糖体合成的抗菌肽已成为抗生素研究的一个有前途的重点领域。抗菌肽分为非核糖体合成肽或核糖体合成肽(RAMPs)。非核糖体合成的肽存在于细菌和真菌中。与核糖体支持的合成相反,这些抗微生物肽由肽合成酶组成。短杆菌肽、杆菌肽、多粘菌素B和万古霉素是非核糖体合成抗菌肽的实例。这些抗生素被证明是有效的研究工具,但与RAMP相比,由于新出现的细菌耐药性,它们对于新应用是不利的,例如耐万古霉素金黄色葡萄球菌和肠球菌。
RAMP源自多种多样的物种,从原核生物到人类。抗菌肽包括宿主对每日暴露于数百万潜在病原体的天然防御。这些肽也可能具有抗病毒、抗寄生虫和抗肿瘤活性。文献中描述了超过500个RAMP。其独特的抗生素谱由氨基酸序列和结构构象决定。RAMP是由12-50个氨基酸组成的基因编码肽,具有非常少的遗传重叠。RAMP之间缺乏序列同源性表明物种环境中形式和功能的进化优化。RAMP通常是阳离子肽,其中至少一半的氨基酸残基具有疏水性,并且具有较少数量的中性或带负电荷的残基。它们的两亲性结构具有相反的疏水性和亲脂性,有助于细菌细胞壁的扰动。
RAMP的作用机制涉及肽与细菌细胞表面的结合、肽的构象变化、多肽单体的聚集以及通过细菌细胞壁的孔形成。RAMP与带负电的革兰氏阴性细菌外细胞壁中的脂多糖或革兰氏阳性细菌外细胞壁的酸性多糖结合。结合后,通过瞬时孔形成发生双层膜的透化。透化导致细胞成分泄漏和细胞死亡。虽然确切的机制尚不清楚,但有几种透化模型。三种透化模型被称为桶形、三角形和地毯。图1描述了RAMP对细菌细胞壁的扰动。
RAMP是临床抗菌药物使用的理想候选药物,因为它们:
1)对抗生素抗性分离株具有活性
2)不选择耐药突变体,并且具有有限的天然细菌抗性
3)与常规抗生素有协同作用,特别是对抗耐药突变体
4)在动物模型中被证明可以杀死细菌
5)快速杀死细菌
6)提供有益的、补充的活动,例如脓毒症抑制
虽然RAMP是理想的临床候选药物,但其多样的结构变异使得很难预测体内RAMP活性;因此,设计功能性合成模拟物是具有挑战性的。肽序列或构象的微小改变可导致体内主要的抗菌和细胞毒性水平的差异。对一系列细菌生物体的最佳体外抑制浓度(MIC)为18μg/mL。然而,从体外MIC预测理想的体内MIC是具有挑战性的。为了获得MIC、特异性、稳定性和毒性信息,已经使用来自RAMP相关的生物信息学数据库的数据设计了新的合成抗微生物肽(表1)。生产成本、蛋白酶敏感性和广泛使用的潜在耐药性是RAMP应用从研究到临床环境转变过程中的另一个问题。
网址:https://www.pschina66.com/
更多资讯可致电15618136059咨询。